中文网站正在持续更新中,请密切关注我们康肽生物的最新动态,或点击访问右上角的英文官方网站 www.phoenixpeptide.com
PHOENIX PHARMACEUTICALS, INC. TOP HOME PAGE
Top » Catalog English Version | My Account | 联系我们 | China



 多肽



 标记多肽 



 多肽激素文库



 抗体 



 免疫试剂盒 



 生物标志物阵列 



 多肽样品检测



 自定义肽链合成及GMP



 产品目录索取



 样品准备



 提问和解答


Angiostatic chemokine (CXCL4/PF4; CXCL9/MIG )

produce pharmacological effects on Diabetes

Last updated:

Human CXCL9 precursor protein and derived peptides

CXCL9 Sequence

gag

Figure from: Vanheule V. et al. BiochemPharmacol 2016 Jan 15;100:73-85. doi: 10.1016/j.bcp.2015.11.001. Epub 2015 Nov 10.

Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus.

Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus.

Chemokines attract leukocytes to sites of infection in a G protein-coupled receptor (GPCR) and glycosaminoglycan (GAG) dependent manner. Therefore, chemokines are crucial molecules for proper functioning of our antimicrobial defense mechanisms. In addition, some chemokines haveGPCR-independent defensin-like antimicrobial activities against bacteria and fungi. Recently, high affinity for GAGs has been reported for the positively charged COOH-terminal region of the chemokine CXCL9. In addition to CXCL9, also CXCL12γ has such a positively charged COOH-terminal region with about 50% positively charged amino acids. In this report, we compared the affinity of COOH-terminal peptides of CXCL9 and CXCL12γ for GAGs and KD values in the low nM range were detected. Several enveloped viruses such as herpesviruses, hepatitis viruses, human immunodeficiency virus (HIV), dengue virus (DENV), etc. are known to bind to GAGs such as the negatively charged heparan sulfate (HS). In this way GAGs are important for the initial contacts between viruses and host cells and for the infection of the cell. Thus, inhibiting the virus-cell interactions, by blocking GAG-binding sites on the host cell, might be a way to target multiple virus families and resistant strains. This article reports that the COOH-terminal peptides of CXCL9 (Cat.# 045-62) and CXCL12γ (Cat.# 030-23) have antiviral activity against DENV serotype 2, clinical and laboratory strains of herpes simplex virus (HSV)-1 and respiratory syncytial virus (RSV). Moreover, we show that CXCL9(74-103) competes with DENV envelope protein domain III for binding to heparin. These short chemokine-derived peptides may be lead molecules for the development of novel antiviral agents.

Vanheule V, Vervaeke P, Mortier A et al., Biochem Pharmacol. 2016 Jan 15;100:73-85. doi: 10.1016/j.bcp.2015.11.001. Epub 2015 Nov 10.

CXCR3, a double-edged sword in tumor progression and angiogenesis.

CXC chemokines are involved in chemotaxis, regulation of cell growth, induction of apoptosis and modulation of angiostatic effects. CXCL9, CXCL10, CXCL11, CXCL4 and its variant CXCL4L1 are members of the CXC chemokine family, which bind to the CXCR3 receptor to exert their biological effects. These chemokines are associated with a variety o f human diseases including chronic inflammation, immune dysfunction, cancer and metastasis. In this review, we focus on accumulating evidence demonstrating the pivotal role of CXCR3 in tumor progression. Its effects are mediated directly in tumor cells or indirectly through the regulation of angiogenesis and tumor immunity. Understanding the emerging role of CXCR3 and its signaling mechanisms further validates this receptor as a biomarker and therapeutic target for tumor progression and tumor angiogenesis.

Billottet C, Quemener C, Bikfalvi A Biochim Biophys Acta. 2013 Dec;1836(2):287-95. doi: 10.1016/j.bbcan.2013.08.002. Epub 2013 Aug 27.

Expression of MIG/CXCL9 in cystic fibrosis and modulation of its activities by elastase of Pseudomonas aeruginosa.

In cystic fibrosis (CF), colonization of the airways with Pseudomonas aeruginosa is associated with disease deterioration. The mechanism behind the disease progression is not fully understood. The present work shows that the antibacterial chemokine MIG/CXCL9 is present in the airways and in sputum of CF patients. MIG/CXCL9 showed high bactericidal activity against. P. aeruginosa, including some strains from the airways of CF patients. Full-length MIG/CXCL9 was detected in sputum from healthy controls and CF patients colonized with P. aeruginosa. However, degraded MIG/CXCL9 was only found in CF sputum. In vitro, elastase of P. aeruginosa cleaved off a fragment of similar size and two additional fragments from MIG/CXCL9. The fragments showed less bactericidal activity against P. aeruginosa compared with the full-length protein. The fragments did not activate the MIG/CXCL9 receptor CXCR3 (expressed e.g. by NK cells, mast cells, and activated T cells) but instead displayed noncompetitive inhibition. In vitro, a decrease in CXCR3-bearing cells was found within and in the proximity of the bronchial epithelium of CF lung tissue compared with controls. Taken together, both bactericidal and cell-recruiting activities of MIG/CXCL9 are corrupted by P. aeruginosa through release of elastase, and this may contribute to impaired airway host defense in CF.

Jovic S1, Shikhagaie M, Mörgelin M,J Innate Immun. 2014;6(6):846-59. doi: 10.1159/000365399. Epub 2014 Aug 9.

Emerging importance of chemokine receptor CXCR3 and its ligands in cardiovascular diseases.

The CXC chemokines, CXCL4, -9, -10, -11, CXCL4L1, and the CC chemokine CCL21, activate CXC chemokine receptor 3 (CXCR3), a cell-surface G protein-coupled receptor expressed mainly by Th1 cells, cytotoxic T (Tc) cells and NK cells that have a key role in immunity and inflammation. However, CXCR3 is also expressed by vascular smooth muscle and endothelial cells, and appears to be important in controlling physiological vascular function. In the last decade, evidence from pre-clinical and clinical studies has revealed the participation of CXCR3 and its ligands in multiple cardiovascular diseases (CVDs) of different aetiologies including atherosclerosis, hypertension, cardiac hypertrophy and heart failure, as well as in heart transplant rejection and transplant coronary artery disease (CAD). CXCR3 ligands have also proven to be valid biomarkers for the development of heart failure and left ventricular dysfunction, suggesting an underlining pathophysiological relation between levels of these chemokines and the development of adverse cardiac remodelling. The observation that several of the above-mentioned chemokines exert biological actions independent of CXCR3 provides both opportunities and challenges for developing effective drug strategies. In this review, we provide evidence to support our contention that CXCR3 and its ligands actively participate in the development and progression of CVDs, and may additionally have utility as diagnostic and prognostic biomarkers.

Altara R, Manca M, Brandão RD et al., Clin Sci (Lond). 2016 Apr 1;130(7):463-78. doi: 10.1042/CS20150666.

The Positively Charged COOH-terminal Glycosaminoglycan-binding CXCL9(74-103) Peptide Inhibits CXCL8-induced Neutrophil Extravasation and Monosodium Urate Crystal-induced Gout in Mice.

The ELR(-)CXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74-103)) being the most potent. The COOH-terminal peptide CXCL9(74-103) does not signal through or act as an antagonist for CXCR3, the G protein-coupledCXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74-103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74-103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74-103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.

Vanheule V, Janssens R, Boff D et al., J Biol Chem. 2015 Aug 28;290(35):21292-304. doi: 10.1074/jbc.M115.649855. Epub 2015 Jul 16.

Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus.

Chemokines attract leukocytes to sites of infection in a G protein-coupled receptor (GPCR) and glycosaminoglycan (GAG) dependent manner. Therefore, chemokines are crucial molecules for proper functioning of our antimicrobial defense mechanisms. In addition, some chemokines have GPCR-independent defensin-like antimicrobial activities against bacteria and fungi. Recently, high affinity for GAGs has been reported for the positively charged COOH-terminal region of the chemokine CXCL9. In addition to CXCL9, also CXCL12γ has such a positively charged COOH-terminal region with about 50% positively charged amino acids. In this report, we compared the affinity of COOH-terminal peptides of CXCL9 and CXCL12γ for GAGs and KD values in the low nM range were detected. Several enveloped viruses such as herpesviruses, hepatitis viruses, human immunodeficiency virus (HIV), dengue virus (DENV), etc. are known to bind to GAGs such as the negatively charged heparan sulfate (HS). In this way GAGs are important for the initial contacts between viruses and host cells and for the infection of the cell. Thus, inhibiting the virus-cell interactions, by blocking GAG-binding sites on the host cell, might be a way to target multiple virus families and resistant strains. This article reports that the COOH-terminal peptides of CXCL9 and CXCL12γ have antiviral activity against DENV serotype 2, clinical and laboratory strains of herpes simplex virus (HSV)-1 and respiratory syncytial virus (RSV). Moreover, we show that CXCL9(74-103) competes with DENV envelope protein domain III for binding to heparin. These short chemokine-derived peptides may be lead molecules for the development of novel antiviral agents.

Vanheule V, Vervaeke P, Mortier A et al., Biochem Pharmacol. 2015 Nov 10. pii: S0006-2952(15)00710-8. doi: 10.1016/j.bcp.2015.11.001

Serum monokine induced by gamma interferon as a novel biomarker for coronary artery calcification in humans.

BACKGROUND: T-cell-mediated immune responses play important roles in the progression of atherosclerotic disease. Studies have linked various inflammatory biomarkers with the burden of coronary artery calcification, but the significance of T-cell-specific chemokines in coronary artery calcification has not been confirmed. We aimed to examine the association between serum levels of the monokine induced by gamma interferon (MIG) and the coronary artery calcium score (CACS).
METHODS: We enrolled 456 individuals (285 men, 66.5±5.8 years) who were registered in the Mapo-gu public health center cohort. We selected 228 individuals with a CACS of more than 100 and 228 age-matched and sex-matched individuals with a CACS of less than 100. All participants underwent coronary computed tomography for CACS measuring. Clinical and laboratory variables including serum MIG levels were analyzed at the time of enrollment.
RESULTS: The serum level of MIG was significantly higher in participants with a CACS of more than 100 (152.1±119.1 vs. 130.3±112.9, P=0.046). Serum MIG levels correlated significantly with CACS (r=0.113, P=0.016), and higher levels of MIG were associated with severe plaque burden (CACS>400, P=0.025). Multiple linear regression analysis showed that serum MIG levels were associated independently with CACS after controlling for confounding factors and medications (β=0.114, P=0.026).
CONCLUSION: Serum MIG levels were associated independently with CACS after adjusting for traditional cardiovascular risk factors. These findings suggest that MIG may be used as a novel biomarker for T-cell inflammation and atherosclerotic plaque burden in humans.

Yu HT, Oh J, Chang HJ et al., Coron Artery Dis. 2015 Jun;26(4):317-21. doi: 10.1097/MCA.0000000000000236.

The Chemokine Platelet Factor-4 Variant (PF-4var)/CXCL4L1 Inhibits Diabetes-Induced Blood-Retinal Barrier Breakdown.

PURPOSE: To investigate the expression of platelet factor-4 variant (PF-4var/CXCL4L1) in epiretinal membranes from patients with proliferative diabetic retinopathy (PDR) and the role of PF-4var/CXCL4L1 in the regulation of blood-retinal barrier (BRB) breakdown in diabetic rat retinas and human retinal microvascular endothelial cells (HRMEC).
METHODS: Rats were treated intravitreally with PF-4var/CXCL4L1 or the anti-vascular endothelial growth factor (VEGF) agent bevacizumab on the first day after diabetes induction. Blood-retinal barrier breakdown was assessed in vivo with fluorescein isothiocyanate (FITC)-conjugated dextran and in vitro in HRMEC by transendothelial electrical resistance and FITC-conjugated dextran cell permeability assay. Occludin, vascular endothelial (VE)-cadherin, hypoxia-inducible factor (HIF)-1α, VEGF, tumor necrosis factor (TNF)-α, receptor for advanced glycation end products (RAGE), caspase-3 levels, and generation of reactive oxygen species (ROS) were assessed by Western blot, enzyme-linked immunosorbent assays, or spectrophotometry.
RESULTS: In epiretinal membranes, vascular endothelial cells and stromal cells expressed PF-4var/CXCL4L1. In vitro, HRMEC produced PF-4var/CXCL4L1 after stimulation with a combination of interleukin (IL)-1β and TNF-α, and PF-4var/CXCL4L1 inhibited VEGF-mediated hyperpermeability in HRMEC. In rats, PF-4var/CXCL4L1 was as potent as bevacizumab in attenuating diabetes-induced BRB breakdown. This effect was associated with upregulation of occludin and VE-cadherin and downregulation of HIF-1α, VEGF, TNF-α, RAGE, and caspase-3, whereas ROS generation was not altered.
CONCLUSIONS: Our findings suggest that increasing the intraocular PF-4var/CXCL4L1 levels early after the onset of diabetes protects against diabetes-induced BRB breakdown.

Abu El-Asrar AM, Mohammad G, Nawaz MI et al., Invest Ophthalmol Vis Sci. 2015 Feb 24;56(3):1956-64. doi: 10.1167/iovs.14-16144.

PF-4var/CXCL4L1 predicts outcome in stable coronary artery disease patients with preserved left ventricular function.

BACKGROUND: Platelet-derived chemokines are implicated in several aspects of vascular biology. However, for the chemokine platelet factor 4 variant (PF-4var/CXCL4L1), released by platelets during thrombosis and with different properties as compared to PF-4/CXCL4, its role in heart disease is not yet studied. We evaluated the determinants and prognostic value of the platelet-derived chemokines PF-4var, PF-4 and RANTES/CCL5 in patients with stable coronary artery disease (CAD).
METHODOLOGY/PRINCIPAL FINDINGS: From 205 consecutive patients with stable CAD and preserved left ventricular (LV) function, blood samples were taken at inclusion and were analyzed for PF-4var, RANTES, platelet factor-4 and N-terminal pro-B-type natriuretic peptide (NT-proBNP). Patients were followed (median follow-up 2.5 years) for the combined endpoint of cardiac death, non-fatal acute myocardial infarction, stroke or hospitalization for heart failure. Independent determinants of PF-4var levels (median 10 ng/ml; interquartile range 8-16 ng/ml) were age, gender and circulating platelet number. Patients who experienced cardiac events (n = 20) during follow-up showed lower levels of PF-4var (8.5 [5.3-10] ng/ml versus 12 [8-16] ng/ml, p = 0.033). ROC analysis for events showed an area under the curve (AUC) of 0.82 (95% CI 0.73-0.90, p<0.001) for higher NT-proBNP levels and an AUC of 0.32 (95% CI 0.19-0.45, p = 0.009) for lower PF-4var levels. Cox proportional hazard analysis showed that PF-4var has an independent prognostic value on top of NT-proBNP.
CONCLUSIONS: We conclude that low PF-4var/CXCL4L1 levels are associated with a poor outcome in patients with stable CAD and preserved LV function. This prognostic value is independent of NT-proBNP levels, suggesting that both neurohormonal and platelet-related factors determine outcome in these patients.

De Sutter J, Van de Veire NR, Struyf S et al., PLoS One. 2012;7(2):e31343. doi: 10.1371/journal.pone.0031343. Epub 2012 Feb 23.

The COOH-terminal peptide of platelet factor-4 variant (CXCL4L1/PF-4var47-70) strongly inhibits angiogenesis and suppresses B16 melanoma growth in vivo.

Chemokines influence tumor growth directly or indirectly via both angiogenesis and tumor-leukocyte interactions. Platelet factor-4 (CXCL4/PF-4), which is released from alpha-granules of activated platelets, is the first described angiostatic chemokine. Recently, it was found that the variant of CXCL4/PF-4 (CXCL4L1/PF-4var) could exert a more pronounced angiostatic and antitumoral effect than CXCL4/PF-4. However, the molecular mechanisms of the angiostatic activities of the PF-4 forms remain partially elusive. Here, we studied the biological properties of the chemically synthesized COOH-terminal peptides of CXCL4/PF-4 (CXCL4/PF-4(47-70)) and CXCL4L1/PF-4var (CXCL4L1/PF-4var(47-70)). Both PF-4 peptides lacked monocyte and lymphocyte chemotactic activity but equally well inhibited (25 nmol/L) endothelial cell motility and proliferation in the presence of a single stimulus (i.e., exogenous recombinant fibroblast growth factor-2). In contrast, when assayed in more complex angiogenesis test systems characterized by the presence of multiple mediators, including in vitro wound-healing (2.5 nmol/L versus 12.5 nmol/L), Matrigel (60 nmol/L versus 300 nmol/L), and chorioallantoic membrane assays, CXCL4L1/PF-4var(47-70) was found to be significantly (5-fold) more angiostatic than CXCL4/PF-4(47-70). In addition, low (7 microg total) doses of intratumoral CXCL4L1/PF-4var (47-70) inhibited B16 melanoma growth in mice more extensively than CXCL4/PF-4(47-70). This antitumoral activity was predominantly mediated through inhibition of angiogenesis (without affecting blood vessel stability) and induction of apoptosis, as evidenced by immunohistochemical and fluorescent staining of B16 tumor tissue. In conclusion, CXCL4L1/PF-4var(47-70) is a potent antitumoral and antiangiogenic peptide. These results may represent the basis for the design of CXCL4L1/PF-4var COOH-terminal-derived peptidomimetic anticancer drugs.

Vandercappellen J, Liekens S, Bronckaers A et al., Mol Cancer Res. 2010 Mar;8(3):322-34. doi: 10.1158/1541-7786.MCR-09-0176. Epub 2010 Mar 9.

%CXCL%


分类搜索
关键字搜索
按字母搜索
A B C D E F G H I J K L M N
O P Q R S T U V W X Y Z

Copyright © 2024 PHOENIX BIOTECH