中文网站正在持续更新中,请密切关注我们康肽生物的最新动态,或点击访问右上角的英文官方网站 www.phoenixpeptide.com
PHOENIX PHARMACEUTICALS, INC. TOP HOME PAGE
Top » Catalog English Version | My Account | 联系我们 | China



 多肽



 标记多肽 



 多肽激素文库



 抗体 



 免疫试剂盒 



 生物标志物阵列 



 多肽样品检测



 自定义肽链合成及GMP



 产品目录索取



 样品准备



 提问和解答


Encoded overexpressed CRNDEP in Highly Proliferating Tissues
Last updated:

Anabolic metabolism

Model for CRNDE's role in insulin signaling and metabolism. Insulin/IGFs repress CRNDE intronic transcripts via the two signaling pathways, PI3K/AKT/mTOR and Raf/MAPK. The elevated levels of CRNDE nuclear transcripts in CRC cells increase glucose metabolism, lactate secretion and lipid synthesis. CRNDE nuclear transcripts also feedback on upstream insulin/IGF signaling pathways, but the extent to which these pathways can be attenuated likely depends on whether constitutively activating mutations are present. Text and arrows in black represent what was experimentally observed in the current study, while text/arrows in blue are speculation. (+) and (−) indicate an experimentally-observed positive or negative correlation with CRNDE expression, respectively.

Figure from: Blake C. Ellis, Lloyd D. Graham, Peter L. Molloy, CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, Volume 1843 (2), 2014, 372-386.

CRNDEP Structure

The Novel Gene CRNDE Encodes a Nuclear Peptide (CRNDEP) Which Is Overexpressed in Highly Proliferating Tissues.

CRNDE, recently described as the lncRNA-coding gene, is overexpressed at RNA level in human malignancies. Its role in gametogenesis, cellular differentiation and pluripotency has been suggested as well. Herein, we aimed to verify our hypothesis that the CRNDE gene may encode a protein product, CRNDEP. By using bioinformatics methods, we identified the 84-amino acid ORF encoded by one of two CRNDE transcripts, previously described by our research team. This ORF was cloned into two expression vectors, subsequently utilized in localization studies in HeLa cells. We also developed a polyclonal antibody against CRNDEP. Its specificity was confirmed in immunohistochemical, cellular localization, Western blot and immunoprecipitation experiments, as well as by showing a statistically significant decrease of endogenous CRNDEP expression in the cells with transient shRNA-mediated knockdown of CRNDE. Endogenous CRNDEP localizes predominantly to the nucleus and its expression seems to be elevated in highly proliferating tissues, like the parabasal layer of the squamous epithelium, intestinal crypts or spermatocytes. After its artificial overexpression in HeLa cells, in a fusion with either the EGFP or DsRed Monomer fluorescent tag, CRNDEP seems to stimulate the formation of stress granules and localize to them. Although the exact role of CRNDEP is unknown, our preliminary results suggest that it may be involved in the regulation of the cell proliferation. Possibly, CRNDEP also participates in oxygen metabolism, considering our in silico results, and the correlation between its enforced overexpression and the formation of stress granules. This is the first report showing the existence of a peptide encoded by the CRNDE gene.

Szafron LM, Balcerak A, Grzybowska EA, et al., PLoS One. 2015 May 15;10(5):e0127475. doi: 10.1371/journal.pone.0127475. eCollection 2015.

CRNDE, a long-noncoding RNA, promotes glioma cell growth and invasion through mTOR signaling.

The transcripts of the gene Colorectal Neoplasia Differentially Expressed (CRNDE) are recognized as long-noncoding RNAs (lncRNAs), which are expressed in specific regions within the human brain, and are the most upregulated lncRNA in gliomas. However, the underlying regulation and function of CRNDE in gliomas are largely unknown. In this study, the upregulation of CRNDE was confirmed in both primary specimens from glioma patients and in vitro with cell lines. Overexpression of specific CRNDE transcript promotes cell growth and migration in vitro while knockdown of CRNDE expression manifests a repressive function during these cellular processes. The growth promoting effect of CRNDE was also demonstrated in a xenograft mouse model. Mechanistic studies further revealed that histone acetylation in the promoter region might account for the upregulation of CRNDE, and the level of CRNDE expression could be modulated by mammalian Target of Rapamycin (mTOR) signaling in glioma. Thus, our results shed a light on utilizing CRNDE as a potential novel therapeutic target for the treatment of glioma.

Wang Y, Wang Y, Li J et al., Cancer Lett. 2015 Mar 23. pii: S0304-3835(15)00219-0. doi: 10.1016/j.canlet.2015.03.027. [Epub ahead of print]

CRNDE, a long non-coding RNA responsive to insulin/IGF signaling, regulates genes involved in central metabolism.

Colorectal neoplasia differentially expressed (CRNDE) is a novel gene that is activated early in colorectal cancer but whose regulation and functions are unknown. CRNDE transcripts are recognized as long non-coding RNAs (lncRNAs), which potentially interact with chromatin-modifying complexes to regulate gene expression via epigenetic changes. Complex alternative splicing results in numerous transcripts from this gene, and we have identified novel transcripts containing a highly-conserved sequence within intron 4 ("gVC-In4"). In colorectal cancer cells, we demonstrate that treatment with insulin and insulin-like growth factors (IGF) repressed CRNDE nuclear transcripts, including those encompassing gVC-In4. These repressive effects were negated by use of inhibitors against either the PI3K/Akt/mTOR pathway or Raf/MAPK pathway, suggesting CRNDE is a downstream target of both signaling cascades. Expression array analyses revealed that siRNA-mediated knockdown of gVC-In4 transcripts affected the expression of many genes, which showed correlation with insulin/IGF signaling pathway components and responses, including glucose and lipid metabolism. Some of the genes are identical to those affected by insulin treatment in the same cell line. The results suggest that CRNDE expression promotes the metabolic changes by which cancer cells switch to aerobic glycolysis (Warburg effect). This is the first report of a lncRNA regulated by insulin/IGFs, and our findings indicate a role for CRNDE nuclear transcripts in regulating cellular metabolism which may correlate with their upregulation in colorectal cancer.

Ellis BC1, Graham LD2, Molloy PL3, Biochim Biophys Acta. 2014 Feb;1843(2):372-86. doi: 10.1016/j.bbamcr.2013.10.016. Epub 2013 Nov 1.

CRNDE: A Long Non-Coding RNA Involved in Cancer, Neurobiology, and Development.

CRNDE is the gene symbol for Colorectal Neoplasia Differentially Expressed (non-protein-coding), a long non-coding RNA (lncRNA) gene that expresses multiple splice variants and displays a very tissue-specific pattern of expression. CRNDE was initially identified as a lncRNA whose expression is highly elevated in colorectal cancer, but it is also upregulated in many other solid tumors and in leukemias. Indeed, CRNDE is the most upregulated lncRNA in gliomas and here, as in other cancers, it is associated with a "stemness" signature. CRNDE is expressed in specific regions within the human and mouse brain; the mouse ortholog is high in induced pluripotent stem cells and increases further during neuronal differentiation. We suggest that CRNDE is a multifunctional lncRNA whose different splice forms provide specific functional scaffolds for regulatory complexes, such as the polycomb repressive complex 2 (PRC2) and CoREST chromatin-modifying complexes, which CRNDE helps pilot to target genes.

Ellis BC1, Molloy PL, Graham LD, Front Genet. 2012 Nov 29;3:270. doi: 10.3389/fgene.2012.00270. eCollection 2012.

Colorectal Neoplasia Differentially Expressed (CRNDE), a Novel Gene with Elevated Expression in Colorectal Adenomas and Adenocarcinomas.

An uncharacterized gene locus (Chr16:hCG_1815491), now named colorectal neoplasia differentially expressed (gene symbol CRNDE), is activated early in colorectal neoplasia. The locus is unrelated to any known protein-coding gene. Microarray analysis of 454 tissue specimens (discovery) and 68 previously untested specimens (validation) showed elevated expression of CRNDE in >90% of colorectal adenomas and adenocarcinomas. These findings were confirmed and extended by exon microarray studies and RT-PCR assays. CRNDE transcription start sites were identified in CaCo2 and HCT116 cells by 5'-RACE. The major transcript isoforms in colorectal cancer (CRC) cell lines and colorectal tissue are CRNDE-a, -b, -d, -e, -f, -h, and -j. Except for CRNDE-d, the known CRNDE splice variants are upregulated in neoplastic colorectal tissue; expression levels for CRNDE-h alone demonstrate a sensitivity of 95% and specificity of 96% for adenoma versus normal tissue. A quantitative RT-PCR assay measuring CRNDE-h RNA levels in plasma was (with a threshold of 2(-ΔCt) = 2.8) positive for 13 of 15 CRC patients (87%) but only 1 of 15 healthy individuals (7%). We conclude that individual CRNDE transcripts show promise as tissue and plasma biomarkers, potentially exhibiting high sensitivity and specificity for colorectal adenomas and cancers.

Graham LD1, Pedersen SK, Brown GS et al., Genes Cancer. 2011 Aug;2(8):829-40. doi: 10.1177/1947601911431081.

CRNDEP comprison

%042-09%;%042-10%;%042-11%


分类搜索
关键字搜索
按字母搜索
A B C D E F G H I J K L M N
O P Q R S T U V W X Y Z

Copyright © 2024 PHOENIX BIOTECH