中文网站正在持续更新中,请密切关注我们康肽生物的最新动态,或点击访问右上角的英文官方网站 www.phoenixpeptide.com
PHOENIX PHARMACEUTICALS, INC. TOP HOME PAGE
Top Catalog English Version | My Account | 联系我们 | China



 多肽



 标记多肽 



 多肽激素文库



 抗体 



 免疫试剂盒 



 生物标志物阵列 



 多肽样品检测



 自定义肽链合成及GMP



 产品目录索取



 样品准备



 提问和解答


Neuregulin 4 (Nrg4)

Brown Fat Secreted Nrg4 Preserves Metabolic Homeostasis : a Potential Treatment  for T2D and NAFLD

Last updated:

Human NRG4 Chromosomal Location, gene organization, novel isoform expression

Figure from: Hayes N V et al. Clin Cancer Res 2007;13:3147-3155

AACR

The brown fat-enriched secreted factor Nrg4 preserves metabolic homeostasis through attenuation of hepatic lipogenesis.

Brown fat activates uncoupled respiration in response to cold temperature and contributes to systemic metabolic homeostasis. To date, the metabolic action of brown fat has been primarily attributed to its role in fuel oxidation and uncoupling protein 1 (UCP1)-mediated thermogenesis. Whether brown fat engages other tissues through secreted factors remains largely unexplored. Here we show that neuregulin 4 (Nrg4), a member of the epidermal growth factor (EGF) family of extracellular ligands, is highly expressed in adipose tissues, enriched in brown fat and markedly increased during brown adipocyte differentiation. Adipose tissue Nrg4 expression was reduced in rodent and human obesity. Gain- and loss-of-function studies in mice demonstrated that Nrg4 protects against diet-induced insulin resistance and hepatic steatosis through attenuating hepatic lipogenic signaling. Mechanistically, Nrg4 activates ErbB3 and ErbB4 signaling in hepatocytes and negatively regulates de novo lipogenesis mediated by LXR and SREBP1c in a cell-autonomous manner. These results establish Nrg4 as a brown fat-enriched endocrine factor with therapeutic potential for the treatment of obesity-associated disorders, including type 2 diabetes and nonalcoholic fatty liver disease (NAFLD).

Wang GX, Zhao XY, Meng ZX et al., Nat Med. 2014 Dec;20(12):1436-43. doi: 10.1038/nm.3713. Epub 2014 Nov 17.

Brown and white adipose tissues: intrinsic differences in gene expression and response to cold exposure in mice.

Brown adipocytes dissipate energy, whereas white adipocytes are an energy storage site. We explored the plasticity of different white adipose tissuedepots in acquiring a brown phenotype by cold exposure. By comparing cold-induced genes in white fat to those enriched in brown compared with white fat, at thermoneutrality we defined a "brite" transcription signature. We identified the genes, pathways, and promoter regulatory motifs associated with "browning," as these represent novel targets for understanding this process. For example, neuregulin 4 was more highly expressed inbrown adipose tissue and upregulated in white fat upon cold exposure, and cell studies showed that it is a neurite outgrowth-promoting adipokine, indicative of a role in increasing adipose tissue innervation in response to cold. A cell culture system that allows us to reproduce the differential properties of the discrete adipose depots was developed to study depot-specific differences at an in vitro level. The key transcriptional events underpinning white adipose tissue to brown transition are important, as they represent an attractive proposition to overcome the detrimental effects associated with metabolic disorders, including obesity and type 2 diabetes.

Rosell M, Kaforou M, Frontini A et al., Am J Physiol Endocrinol Metab. 2014 Apr 15;306(8):E945-64. doi: 10.1152/ajpendo.00473.2013. Epub 2014 Feb 18.

Identification and characterization of novel spliced variants of neuregulin 4 in prostate cancer.

PURPOSE: The neuregulin (NRG) 1, 2, and 3 genes undergo extensive alternative mRNA splicing, which results in variants that show structural and functional diversity. The aims of this study were to establish whether the fourth member of this family, NRG4, is expressed in prostate cancer, if it is alternatively spliced and whether any functional differences between the variants could be observed.
EXPERIMENTAL DESIGN: The expression of NRG4 was determined using immunohistochemical staining of 40 cases of primary prostate cancer. Bioinformatic analysis and reverse transcription-PCR (RT-PCR) using NRG4 isotype-specific primers on a panel of normal and prostate cancer cell lines were used to identify alternatively spliced NRG4 variants. Expression of these variants was determined using isotype-specific antibodies. Transfection into Cos-7 cells of two of these green fluorescent protein-tagged variants allowed analysis of their subcellular location. Four of thevariants were chemically synthesized and tested for their ability to activate the ErbB4 receptor.
RESULTS: NRG4 was variably expressed in the cytoplasm in the majority of prostate cancer cases, and in a subset of cases in the membrane, high levels were associated with advanced disease stage. Four novel NRG4 splice variants (NRGA2, NRG4 B1-3) were characterized, where each seemed to have a different subcellular location and were also expressed in the cytoplasm of the prostate tumors. NRG4 B3 was also present in endothelial cells. In transfected cells, the A type variant (NRG4 A1) was localized to the membrane, whereas the B type variant (NRG4 B1), which lacks the predicted transmembrane region, had an intracellular localization. Only the variants with an intact epidermal growth factor-like domain activated ErbB4 signaling.
CONCLUSION: NRG4 overexpression is associated with advanced-stage prostate cancer. The alternative splice variants may have different roles in cell signaling, some acting as classic receptor ligands and some with as-yet unknown functions.

Hayes NV, Blackburn E, Smart LV et al., Clin Cancer Res. 2007 Jun 1;13(11):3147-55.

alignment of pro-neurogulin-4

%Neuregulin%


分类搜索
关键字搜索
按字母搜索
A B C D E F G H I J K L M N
O P Q R S T U V W X Y Z

Copyright 2024 PHOENIX BIOTECH