中文网站正在持续更新中,请密切关注我们康肽生物的最新动态,或点击访问右上角的英文官方网站 www.phoenixpeptide.com
PHOENIX PHARMACEUTICALS, INC. TOP HOME PAGE
Top » Catalog English Version | My Account | 联系我们 | China



 多肽



 标记多肽 



 多肽激素文库



 抗体 



 免疫试剂盒 



 生物标志物阵列 



 多肽样品检测



 自定义肽链合成及GMP



 产品目录索取



 样品准备



 提问和解答


Detection of Irisin/FNDC5 on Adipose Tissues

by Using Phoenix's Anti-Irisin Antibody

FNDC5/Irisin Is Not Only a Myokine but Also an Adipokine

Exercise provides clear beneficial effects for the prevention of numerous diseases. However, many of the molecular events responsible for the curative and protective role of exercise remain elusive. The recent discovery of FNDC5/irisin protein that is liberated by muscle tissue in response to exercise might be an important finding with regard to this unsolved mechanism. The most striking aspect of this myokine is its alleged capacity to drive brown-fat development of white fat and thermogenesis. However, the nature and secretion form of this new protein is controversial. The present study reveals that rat skeletal muscle secretes a 25 kDa form of FNDC5, while the 12 kDa/irisin theoretical peptide was not detected. More importantly, this study is the first to reveal that white adipose tissue (WAT) also secretes FNDC5; hence, it may also behave as an adipokine. Our data using rat adipose tissue explants secretomes proves that visceral adipose tissue (VAT), and especially subcutaneous adipose tissue (SAT), express and secrete FNDC5. We also show that short-term periods of endurance exercise training induced FNDC5 secretion by SAT and VAT. Moreover, we observed that WAT significantly reduced FNDC5 secretion in fasting animals. Interestingly, WAT of obese animals over-secreted this hormone, which might suggest a type of resistance. Because 72% of circulating FNDC5/irisin was previously attributed to muscle secretion, our findings suggest a muscle-adipose tissue crosstalk through a regulatory feedback mechanism.

Roca-Rivada A, Castelao C, Senin LL, Landrove MO, Baltar J, et al. (2013) PLoS ONE 8(4): e60563. doi:10.1371/journal.pone.0060563
**The amount of secreted irisin/FNDC5 in muscle and adipose tissues varied greatly before vs. after excercise. The following tissues were analyzed: oxidative-soleus muscle, glycolytic-gastrocnemius muscle, the visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT).

Irisin levels correlate with energy expenditure in a subgroup of humans with energy expenditure greater than predicted by fat free mass.

OBJECTIVE:
Obesity is a result of chronic overconsumption of calories relative to the amount of energy expended. While fat free mass can account for ~80% of the variance in energy expenditure, there is still considerable variability in energy requirements between individuals that cannot be explained. We hypothesized that responsiveness to the recently discovered myokine, irisin, which has been touted to increase energy expenditure via activation of brown adipocytes in rodents and possibly humans, may explain some of the variability in energy expenditure.

MATERIALS/METHODS:
Post-menopausal women (n=17) spent 24-h in a whole room indirect calorimeter. During the study day, subjects remained sedentary and consumed meals tailored to their energy requirements. Plasma irisin, leptin and adiponectin were measured in samples taken from each subject.

RESULTS:
Our results suggest that in general, irisin levels do not correlate with 24-h energy expenditure, however, for a subpopulation irisin levels and energy expenditure are highly correlative.

CONCLUSION:
Irisin may help explain some of the observed variability in individual energy requirements that cannot be accounted for by fat free mass. Therefore, interventions designed to increase irisin action may prove to be promising avenues for the treatment of obesity.

Swick AG, Orena S, O'Connor A. Metabolism. 2013 Apr 8. pii: S0026-0495(13)00071-1. doi: 10.1016/j.metabol.2013.02.012. [Epub ahead of print]

Adiposity and Insulin Resistance in Humans: The Role of the Different Tissue and Cellular Lipid Depots.

Human adiposity has long been associated with insulin resistance and increased cardiovascular risk, and abdominal adiposity is considered particularly adverse. Intra-abdominal fat is associated with insulin resistance, possibly mediated by greater lipolytic activity, lower adiponectin levels, resistance to leptin, and increased inflammatory cytokines, although the latter contribution is less clear. Liver lipid is also closely associated with, and likely to be an important contributor to, insulin resistance, but it may also be in part the consequence of the lipogenic pathway of insulin action being up-regulated by hyperinsulinemia and unimpaired signaling. Again, intramyocellular triglyceride is associated with muscle insulin resistance, but anomalies include higher intramyocellular triglyceride in insulin-sensitive athletes and women (vs men). Such issues could be explained if the "culprits" were active lipid moieties such as diacylglycerol and ceramide species, dependent more on lipid metabolism and partitioning than triglyceride amount.Subcutaneous fat, especially gluteofemoral, appears metabolically protective, illustrated by insulin resistance and dyslipidemia in patients with lipodystrophy. However, some studies suggest that deep sc abdominal fat may have adverse properties.Pericardial and perivascular fat relate to atheromatous disease, but not clearly to insulin resistance. There has been recent interest in recognizable brown adipose tissue in adult humans and its possible augmentation by a hormone, irisin, from exercising muscle. Brown adipose tissue is metabolically active, oxidizes fatty acids, and generates heat but, because of its small and variable quantities, its metabolic importance in humans under usual living conditions is still unclear. Further understanding of specific roles of different lipid depots may help new approaches to control obesity and its metabolic sequelae.

Hocking S, et al. Endocr Rev. 2013 Apr 2. [Epub ahead of print]

Irisin;Irisin antibody publication

H-067-17


分类搜索
关键字搜索
按字母搜索
A B C D E F G H I J K L M N
O P Q R S T U V W X Y Z

Copyright © 2024 PHOENIX BIOTECH